Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 31(18): 29271-29279, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710731

RESUMEN

Quantum frequency conversion (QFC), which involves the exchange of frequency modes of photons, is a prerequisite for quantum interconnects among various quantum systems, primarily those based on telecom photonic network infrastructures. Compact and fiber-closed QFC modules are in high demand for such applications. In this paper, we report such a QFC module based on a fiber-coupled 4-port frequency converter with a periodically poled lithium niobate (PPLN) waveguide. The demonstrated QFC shifted the wavelength of a single photon from 780 to 1541 nm. The single photon was prepared via spontaneous parametric down-conversion (SPDC) with heralding photon detection, for which the cross-correlation function was 40.45 ± 0.09. The observed cross-correlation function of the photon pairs had a nonclassical value of 13.7 ± 0.4 after QFC at the maximum device efficiency of 0.73, which preserved the quantum statistical property. Such an efficient QFC module is useful for interfacing atomic systems and fiber-optic communication.

2.
Med Phys ; 50(6): 3274-3288, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099416

RESUMEN

BACKGROUND: It is important to have precise image guidance throughout proton therapy in order to take advantage of the therapy's physical selectivity. PURPOSE: We evaluated the effectiveness of computed tomography (CT)-image guidance in proton therapy for patients with hepatocellular carcinoma (HCC) by assessing daily proton dose distributions. The importance of daily CT image-guided registration and daily proton dose monitoring for tumors and organs at risk (OARs) was investigated. METHODS: A retrospective analysis was conducted using 570 sets of daily CT (dCT) images throughout whole treatment fractions for 38 HCC patients who underwent passive scattering proton therapy with either a 66 cobalt gray equivalent (GyE)/10 fractions (n = 19) or 76 GyE/20 fractions (n = 19) protocol. The actual daily delivered dose distributions were estimated by forward calculation using the dCT sets, their corresponding treatment plans, and the recorded daily couch correction information. We then evaluated the daily changes of the dose indices D99% , V30GyE , and Dmax for the tumor volumes, non-tumorous liver, and other OARs, that is, stomach, esophagus, duodenum, colon, respectively. Contours were created for all dCT sets. We validated the efficacy of the dCT-based tumor registrations (hereafter, "tumor registration") by comparing them with the bone registration and diaphragm registration as a simulation of the treatment based on the positioning using the conventional kV X-ray imaging. The dose distributions and the indices of three registrations were obtained by simulation using the same dCT sets. RESULTS: In the 66 GyE/10 fractions, the daily D99% value in both the tumor and diaphragm registrations agreed with the planned value with 3%-6% (SD), and the V30GyE value for the liver agreed within ±3%; the indices in the bone registration showed greater deterioration. Nevertheless, tumor-dose deterioration occurred in all registration methods for two cases due to daily changes of body shape and respiratory condition. In the 76 GyE/20 fractions, in particular for such a treatment that the dose constraints for the OARs have to be cared in the original planning, the daily D99% in the tumor registration was superior to that in the other registration (p < 0.001), indicating the effectiveness of the tumor registration. The dose constraints, set in the plan as the maximum dose for OARs (i.e., duodenum, stomach, colon, and esophagus) were maintained for 16 patients including seven treated with re-planning. For three patients, the daily Dmax increased gradually or changed randomly, resulting in an inter-fractional averaged Dmax higher than the constraints. The dose distribution would have been improved if re-planning had been conducted. The results of these retrospective analyses indicate the importance of daily dose monitoring followed by adaptive re-planning when needed. CONCLUSIONS: The tumor registration in proton treatment for HCC was effective to maintain the daily dose to the tumor and the dose constraints of OARs, particularly in the treatment where the maintenance for the dose constraints needs to be considered throughout the treatment. Nevertheless daily proton dose monitoring with daily CT imaging is important for more reliable and safer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia de Protones , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Protones , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Órganos en Riesgo , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
3.
Opt Express ; 30(20): 36711-36716, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258594

RESUMEN

We demonstrate a distribution of frequency-multiplexed polarization-entangled photon pairs over 16 frequency channels using demultiplexers for the signal and idler photons with a frequency spacing of 25 GHz, which is compatible with dense wavelength division multiplexing (DWDM) technology. Unlike conventional frequency-multiplexed photon-pair distribution by a broadband spontaneous parametric down-conversion (SPDC) process, we use photon pairs produced as a biphoton frequency comb by SPDC inside a cavity where one of the paired photons is confined. Owing to the free spectral range of 12.5 GHz and the finesse of over 10 of the cavity, the generated photons having a narrow linewidth in one channel are separated well from those in the other channels, which minimizes channel cross-talk in advance. The observed fidelities of the photon pairs range from 81 % to 96 % in the 16 channels. The results show the usefulness of the polarization-entangled biphoton frequency comb for frequency-multiplexed entanglement distribution via a DWDM system.

4.
Med Phys ; 45(7): 3404-3416, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29788552

RESUMEN

PURPOSE: To evaluate the biological effects of proton beams as part of daily clinical routine, fast and accurate calculation of dose-averaged linear energy transfer (LETd ) is required. In this study, we have developed the analytical LETd calculation method based on the pencil-beam algorithm (PBA) considering the off-axis enhancement by secondary protons. This algorithm (PBA-dLET) was then validated using Monte Carlo simulation (MCS) results. METHODS: In PBA-dLET, LET values were assigned separately for each individual dose kernel based on the PBA. For the dose kernel, we employed a triple Gaussian model which consists of the primary component (protons that undergo the multiple Coulomb scattering) and the halo component (protons that undergo inelastic, nonelastic and elastic nuclear reaction); the primary and halo components were represented by a single Gaussian and the sum of two Gaussian distributions, respectively. Although the previous analytical approaches assumed a constant LETd value for the lateral distribution of a pencil beam, the actual LETd increases away from the beam axis, because there are more scattered and therefore lower energy protons with higher stopping powers. To reflect this LETd behavior, we have assumed that the LETs of primary and halo components can take different values (LETp and LEThalo ), which vary only along the depth direction. The values of dual-LET kernels were determined such that the PBA-dLET reproduced the MCS-generated LETd distribution in both small and large fields. These values were generated at intervals of 1 mm in depth for 96 energies from 70.2 to 220 MeV and collected in the look-up table. Finally, we compared the LETd distributions and mean LETd (LETd,mean ) values of targets and organs at risk between PBA-dLET and MCS. Both homogeneous phantom and patient geometries (prostate, liver, and lung cases) were used to validate the present method. RESULTS: In the homogeneous phantom, the LETd profiles obtained by the dual-LET kernels agree well with the MCS results except for the low-dose region in the lateral penumbra, where the actual dose was below 10% of the maximum dose. In the patient geometry, the LETd profiles calculated with the developed method reproduces MCS with the similar accuracy as in the homogeneous phantom. The maximum differences in LETd,mean for each structure between the PBA-dLET and the MCS were 0.06 keV/µm in homogeneous phantoms and 0.08 keV/µm in patient geometries under all tested conditions, respectively. CONCLUSIONS: We confirmed that the dual-LET-kernel model well reproduced the MCS, not only in the homogeneous phantom but also in complex patient geometries. The accuracy of the LETd was largely improved from the single-LET-kernel model, especially at the lateral penumbra. The model is expected to be useful, especially for proper recognition of the risk of side effects when the target is next to critical organs.


Asunto(s)
Algoritmos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación por Computador , Humanos , Transferencia Lineal de Energía , Hígado/efectos de la radiación , Pulmón/efectos de la radiación , Masculino , Método de Montecarlo , Órganos en Riesgo , Próstata/efectos de la radiación , Terapia de Protones/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación
5.
J Appl Clin Med Phys ; 19(1): 60-72, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29178595

RESUMEN

PURPOSE: The purpose of this study is to improve dose calculation accuracy of the simplified Monte Carlo (SMC) algorithm in the low-dose region. Because conventional SMC algorithms calculate particle scattering in consideration of multiple Coulomb scattering (MCS) only, they approximate lateral dose profiles by a single Gaussian function. However, it is well known that the low-dose region spreads away from the beam axis, and it has been pointed out that modeling of the low-dose region is important to calculated dose accurately. METHODS: A SMC algorithm, which is named modified SMC and considers not only MCS but also large angle scattering resembling hadron elastic scattering, was developed. In the modified SMC algorithm, the particle fluence varies in the longitudinal direction because the large-angle scattering decreases residual range of particles in accordance with their scattering angle and tracking of the particles with large scattering angle is terminated at a short distance downstream from the scattering. Therefore, modified integrated depth dose (m-IDD) tables, which are converted from measured IDD in consideration of the fluence loss, are used to calculate dose. RESULTS: In the case of a 1-liter cubic target, the calculation accuracy was improved in comparison with that of a conventional algorithm, and the modified algorithm results agreed well with Geant4-based simulation results; namely, 98.8% of the points satisfied the 2% dose/2 mm distance-to-agreement (DTA) criterion. The calculation time of the modified SMC algorithm was 1972 s in the case of 4.4 × 108 particles and 16-threading operation of an Intel Xeon E5-2643 (3.3-GHz clock). CONCLUSIONS: An SMC algorithm that can reproduce a laterally widespread low-dose region was developed. According to the comparison with a Geant4-based simulation, it was concluded that the modified SMC algorithm is useful for calculating dose of proton radiotherapy.


Asunto(s)
Algoritmos , Método de Montecarlo , Fantasmas de Imagen , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Distribución Normal , Dosificación Radioterapéutica
6.
Cancers (Basel) ; 9(12)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236051

RESUMEN

A mini-ridge filter is often used to widen the Bragg peak in the longitudinal direction at low energies but not high energies. To facilitate the clinical use of a mini-ridge filter, we performed a planning study for the feasibility of a mini-ridge filter as an integral part of the synchrotron nozzle (IMRF). Dose models with and without IMRF were commissioned in a commercial Treatment planning system (TPS). Dosimetric characteristics in a homogenous water phantom were compared between plans with and without IMRF for a fixed spread-out Bragg peak width of 4 cm with distal ranges varying from 8 to 30 g/cm². Six clinical cases were then used to compare the plan quality between plans. The delivery efficiency was also compared between plans in both the phantom and the clinical cases. The Bragg peak width was increased by 0.18 cm at the lowest energy and by only about 0.04 cm at the highest energy. The IMRF increased the spot size (σ) by up to 0.1 cm at the lowest energy and by only 0.02 cm at the highest energy. For the phantom, the IMRF negligibly affected dose at high energies but increased the lateral penumbra by up to 0.12 cm and the distal penumbra by up to 0.06 cm at low energies. For the clinical cases, the IMRF slightly increased dose to the organs at risk. However, the beam delivery time was reduced from 18.5% to 47.1% for the lung, brain, scalp, and head and neck cases, and dose uniformities of target were improved up to 2.9% for these cases owing to the reduced minimum monitor unit effect. In conclusion, integrating a mini-ridge filter into a synchrotron nozzle is feasible for improving treatment efficiency without significantly sacrificing the plan quality.

7.
Med Phys ; 43(3): 1437-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26936728

RESUMEN

PURPOSE: The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. METHODS: The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. RESULTS: The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. CONCLUSIONS: The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.


Asunto(s)
Método de Montecarlo , Terapia de Protones , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Distribución Normal , Dosificación Radioterapéutica , Programas Informáticos
8.
Med Phys ; 39(9): 5584-91, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22957624

RESUMEN

PURPOSE: In accurate proton spot-scanning therapy, continuous target tracking by fluoroscopic x ray during irradiation is beneficial not only for respiratory moving tumors of lung and liver but also for relatively stationary tumors of prostate. Implanted gold markers have been used with great effect for positioning the target volume by a fluoroscopy, especially for the cases of liver and prostate with the targets surrounded by water-equivalent tissues. However, recent studies have revealed that gold markers can cause a significant underdose in proton therapy. This paper focuses on prostate cancer and explores the possibility that multiple-field irradiation improves the underdose effect by markers on tumor-control probability (TCP). METHODS: A Monte Carlo simulation was performed to evaluate the dose distortion effect. A spherical gold marker was placed at several characteristic points in a water phantom. The markers were with two different diameters of 2 and 1.5 mm, both visible on fluoroscopy. Three beam arrangements of single-field uniform dose (SFUD) were examined: one lateral field, two opposite lateral fields, and three fields (two opposite lateral fields + anterior field). The relative biological effectiveness (RBE) was set to 1.1 and a dose of 74 Gy (RBE) was delivered to the target of a typical prostate size in 37 fractions. The ratios of TCP to that without the marker (TCP(r)) were compared with the parameters of the marker sizes, number of fields, and marker positions. To take into account the dependence of biological parameters in TCP model, α∕ß values of 1.5, 3, and 10 Gy (RBE) were considered. RESULTS: It was found that the marker of 1.5 mm diameter does not affect the TCPs with all α∕ß values when two or more fields are used. On the other hand, if the marker diameter is 2 mm, more than two irradiation fields are required to suppress the decrease in TCP from TCP(r) by less than 3%. This is especially true when multiple (two or three) markers are used for alignment of a patient. CONCLUSIONS: It is recommended that 1.5-mm markers be used to avoid the reduction of TCP as well as to spare the surrounding critical organs, as long as the markers are visible on x-ray fluoroscopy. When 2-mm markers are implanted, more than two fields should be used and the markers should not be placed close to the distal edge of any of the beams.


Asunto(s)
Marcadores Fiduciales , Método de Montecarlo , Terapia de Protones , Dosis de Radiación , Radioterapia/normas , Humanos , Masculino , Probabilidad , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica
9.
Phys Med Biol ; 56(5): 1319-28, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21297243

RESUMEN

Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.


Asunto(s)
Algoritmos , Gráficos por Computador , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Dosificación Radioterapéutica , Factores de Tiempo
10.
Phys Med Biol ; 54(13): N273-82, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19531845

RESUMEN

Dose distributions distorted by a periodic structure, such as a ridge filter, are analytically investigated. Based on the beam optics, the fluence distributions of scanned beams passing through the ridge filter are traced. It is shown that the periodic lateral dose distribution blurred by multiple Coulomb scattering can be expressed by a sum of cosine functions through Fourier transform. The result shows that the dose homogeneity decreases exponentially as the period of the structure becomes longer. This analysis is applied to the example case of a mini-ridge filter. The mini-ridge filter is designed to broaden sharp Bragg peaks for an energy-stacking irradiation method. The dose distributions depend on the period of the ridge filter structure and the angular straggling at the ridge filter position. Several cases are prepared where the period and angular straggling are supposed to be probable values. In these cases, the lateral distributions obtained by the analytical method are compared to Monte Carlo simulation results. Both distributions show good agreement with each other within 1%, which means that this analysis allows estimation of the dose distribution downstream of the ridge filter quantitatively. The appropriate period of grooves and scatterer width can be determined which ensures sufficient homogeneity.


Asunto(s)
Diseño Asistido por Computadora , Filtración/instrumentación , Radioterapia Conformacional/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
11.
Phys Med Biol ; 54(10): 3101-11, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19420427

RESUMEN

Uniform scanning with a relatively large beam size can improve beam utilization efficiency more than conventional irradiation methods using scatterers and can achieve a large-field, long-range and large spread-out Bragg peak (SOBP). The SOBP is obtained by energy stacking in uniform scanning, but its disadvantage is that the number of stacking layers is large, especially in the low-energy region, because the Bragg peak of the pristine beam is very sharp. We applied a mini-ridge filter to broaden the pristine Bragg peak up to a stacked layer thickness of 1 or 2 cm in order to decrease the number of stacking layers. The number of stacking layers can be reduced to 20% or less than that in the case of pristine beam stacking. Although the distal falloff of the SOBP is deteriorated by applying the mini-ridge filter, we can improve the distal falloff to that of pristine beam stacking by introducing the distal filter to the irradiation of the most distal layer. Uniform scanning in combination with mini-ridge filter use can more than double the beam utilization efficiency over that of passive irradiation techniques.


Asunto(s)
Filtración/instrumentación , Terapia de Protones , Radioterapia Conformacional/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
12.
Phys Rev Lett ; 95(23): 232502, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16384301

RESUMEN

The monopole effect of the tensor force is presented, exhibiting how spherical single-particle energies are shifted as protons or neutrons occupy certain orbits. An analytic relation for such shifts is shown, and their general features are explained intuitively. Single-particle levels are shown to change in a systematic and robust way, by using the pi + rho meson exchange tensor potential, consistently with the chiral perturbation idea. Several examples are compared with experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...